Membrane assembly of M13 major coat protein: evidence for a structural adaptation in the hinge region and a tilted transmembrane domain.
نویسندگان
چکیده
New insights into the low-resolution structure of the hinge region and the transmembrane domain of the membrane-bound major coat protein of the bacteriophage M13 are deduced from a single cysteine-scanning approach using fluorescence spectroscopy. New mutant coat proteins are labeled and reconstituted into phospholipid bilayers with varying headgroup compositions (PC, PE, and PG) and thicknesses (14:1PC, 18:1PC, and 22:1PC). Information about the polarity of the local environment around the labeled sites is deduced from the wavelength of maximum emission using AEDANS attached to the SH groups of the cysteines as a fluorescent probe. It is found that the protein is almost entirely embedded in the membrane, whereas the phospholipid headgroup composition of the membrane hardly affects the overall embedment of the protein in the membrane. From the assessment of a hydrophobic and hydrophilic face of the transmembrane helix, it is concluded that the helix is tilted with respect to the membrane normal. As compared to the thicker 18:1PC and 22:1PC membranes, reconstitution of the protein in the thin 14:1PC membranes results in a loss of helical structure and in the formation of a stretched conformation of the hinge region. It is suggested that the hinge region acts as a flexible spring between the N-terminal amphipathic arm and transmembrane hydrophobic helix. On average, the membrane-bound state of the coat protein can be seen as a gently curved and tilted, "banana-shaped" molecule, which is strongly anchored in the membrane-water interface at the C-terminus. From our experiments, we propose a rather small conformational adaptation of the major coat protein as the most likely reversible mechanism for responding to environmental changes during the bacteriophage disassembly and assembly process.
منابع مشابه
Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader pep...
متن کاملSimulation and Analysis of Fret in the Study of Membrane Proteins
A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulationbased fitting. The simulation of FRET was validated b...
متن کاملFRET study of membrane proteins: simulation-based fitting for analysis of membrane protein embedment and association.
A new formalism for the simultaneous determination of the membrane embedment and aggregation of membrane proteins is developed. This method is based on steady-state Förster (or fluorescence) resonance energy transfer (FRET) experiments on site-directed fluorescence labeled proteins in combination with global data analysis utilizing simulation-based fitting. The simulation of FRET was validated ...
متن کاملCysteine residues in the transmembrane regions of M13 procoat suggest that oligomeric coat proteins assemble onto phage progeny
1 2 The M13 phage assembles in the inner membrane of Escherichia coli. During 3 maturation, about 2700 copies of the major coat protein move from the membrane 4 onto a single-stranded phage DNA molecule that extrudes out of the cell. The major 5 coat protein is synthesized as a precursor, termed procoat protein and inserts into 6 the membrane via a Sec-independent pathway. It is processed by le...
متن کاملConditional lethal mutations separate the M13 procoat and Pf3 coat functions of YidC: different YIDC structural requirements for membrane protein insertion.
Conditional lethal YidC mutants have been isolated to decipher the role of YidC in the assembly of Sec-dependent and Sec-independent membrane proteins. We now show that the membrane insertion of the Sec-independent M13 procoat-lep protein is inhibited in a short time in a temperature-sensitive mutant when shifted to the nonpermissive temperature. This provides an additional line of evidence tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 43 44 شماره
صفحات -
تاریخ انتشار 2004